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ABSTRACT 

Nowadays, the coupling of electronic structure and machine learning techniques serves as a powerful
tool to predict chemical and physical properties of a broad range of systems [1-3]. With the aim of
improving the accuracy of predictions, a large number of representations for molecules and solids for
machine learning applications has been developed [4-5]. In this work we propose a novel descriptor
based on the notion of molecular graph. While graphs are largely employed in classification problems
in cheminformatics or bioinformatics [6], they are not often used in regression problem, especially of
energy-related properties. Our method is based on a local decomposition of atomic environments and
on the hybridization of two kernel functions: a graph kernel contribution that describes the chemical
pattern  and  a  Coulomb  label  contribution  that  encodes  finer  details  of  the  local  geometry.  The
accuracy of this new kernel method in energy predictions of molecular and condensed phase systems
is demonstrated by considering the popular QM7 and BA10 datasets [5,7]. These examples show that
the hybrid localized graph kernel outperforms traditional approaches such as, for example, the smooth
overlap of atomic positions (SOAP) [4] and the Coulomb matrices [5]. 
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